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Introduction to 
Optimisation Problems 
And 
Gradient descent

● Machine Learning ⇒ Optimization of 
some function f:

● Most popular method: Gradient descent 
(Hand-designed learning rate)

● Better methods for some particular 
subclasses of problems available, but this 
works well enough for general problems 



The Key Concept

(Optimiser and Optimisee)

● Use learned update rule instead:

● g is the optimiser function parameterized 

by 

● It is implemented using a RNN which 

maintains its own state 

● It outputs the update rule      to be used 

for the optimisee function f 



Loss Function ● The loss function for g is defined as:

● For this loss function, we train the 
optimiser for different datasets

● This is done using gradient descent

(Hence the title)



Assuming                       , i.e.  no need to compute 
second or higher derivatives of f. Hence gradients 
along the dashed lines neglected. 

Computational graph



What we did ● Implemented optimiser function using 
LSTM (Long Short Term Memory) 
Architecture using the PyTorch library to 
utilise the .backward() function to 
conveniently calculate the gradients to be 
used in meta optimizer.

● Compared this with industry standard 
hand-designed techniques like ADAM, 
RMSprop, to do the same as the meta 
optimiser and compared their 
performance. We obtained similar results 
for the quadratic and MNIST databases



Challenges of 
implementation

● Needed to detach gradients from computational 
graph of pytorch to feed them to the meta 
optimizer

● Used CUDA to speed up the processing of the 
algorithm

● Had to make a new optimizee with the new 
parameters each time the meta optimizer is 
unrolled.

● Preprocess the gradients as the range can be 
quite large



Quadratic Loss 
function

● Loss is defined simply as the quadratic 
loss: 

● Objective: To find 10 dimensional vector x 
as close as possible to a given 10 
dimensional vector y

● W is a 10*10 matrix



Best learning rate: 

(For meta-optimiser)

Hence the best learning rate= 0.003



Quadratic function: 
Comparison with 
hand-designed 
techniques

(W and y chosen randomly)



MNIST database: 
Comparison

Sigmoid Function, 1 Hidden layer, 20 nodes



Variation:
2 Hidden Layers:



Variation:
40 hidden units



Variation:
ReLU Activation 
Function

This is the only scenario where our LSTM 
meta-optimiser does not perform better than 

other standard methods



Proposal ● A three layer network in which the third 
network is used to decide the update rule 
for the optimiser which, in turns decides 
the update rule for the meta optimiser.

● The second network then will be a simple 
multi-perceptron network, and the third 
will be the LSTM cell used here. 

● Since the challenge of programming just 
the meta optimizer is complicated 
enough for us, we have not tried to 
implement the structure here, but hope to 
work further.



Conclusion ● Meta-optimizer outperforms 
hand-designed algorithms in most of the 
cases 

● But, this method is time-expensive so
○ It may not find use in live-time prediction 

algorithms (e.g. Automated driving)
○ But can certainly improve data analysis 

and prediction tasks (e.g. in fields of 
Astronomy and particle physics)

● Also emphasises the importance of what 
is called transfer learning where concepts 
learned in similar, simple settings can be 
used to predict outcomes in more 
complex scenarios.
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