
 Learning to learn
by Gradient descent

by Gradient descent

Shrey Gupta, Aarsh Chotalia, Pratyush Menon

Introduction to
Optimisation Problems
And
Gradient descent

● Machine Learning ⇒ Optimization of
some function f:

● Most popular method: Gradient descent
(Hand-designed learning rate)

● Better methods for some particular
subclasses of problems available, but this
works well enough for general problems

The Key Concept

(Optimiser and Optimisee)

● Use learned update rule instead:

● g is the optimiser function parameterized

by

● It is implemented using a RNN which

maintains its own state

● It outputs the update rule to be used

for the optimisee function f

Loss Function ● The loss function for g is defined as:

● For this loss function, we train the
optimiser for different datasets

● This is done using gradient descent

(Hence the title)

Assuming , i.e. no need to compute
second or higher derivatives of f. Hence gradients
along the dashed lines neglected.

Computational graph

What we did ● Implemented optimiser function using
LSTM (Long Short Term Memory)
Architecture using the PyTorch library to
utilise the .backward() function to
conveniently calculate the gradients to be
used in meta optimizer.

● Compared this with industry standard
hand-designed techniques like ADAM,
RMSprop, to do the same as the meta
optimiser and compared their
performance. We obtained similar results
for the quadratic and MNIST databases

Challenges of
implementation

● Needed to detach gradients from computational
graph of pytorch to feed them to the meta
optimizer

● Used CUDA to speed up the processing of the
algorithm

● Had to make a new optimizee with the new
parameters each time the meta optimizer is
unrolled.

● Preprocess the gradients as the range can be
quite large

Quadratic Loss
function

● Loss is defined simply as the quadratic
loss:

● Objective: To find 10 dimensional vector x
as close as possible to a given 10
dimensional vector y

● W is a 10*10 matrix

Best learning rate:

(For meta-optimiser)

Hence the best learning rate= 0.003

Quadratic function:
Comparison with
hand-designed
techniques

(W and y chosen randomly)

MNIST database:
Comparison

Sigmoid Function, 1 Hidden layer, 20 nodes

Variation:
2 Hidden Layers:

Variation:
40 hidden units

Variation:
ReLU Activation
Function

This is the only scenario where our LSTM
meta-optimiser does not perform better than

other standard methods

Proposal ● A three layer network in which the third
network is used to decide the update rule
for the optimiser which, in turns decides
the update rule for the meta optimiser.

● The second network then will be a simple
multi-perceptron network, and the third
will be the LSTM cell used here.

● Since the challenge of programming just
the meta optimizer is complicated
enough for us, we have not tried to
implement the structure here, but hope to
work further.

Conclusion ● Meta-optimizer outperforms
hand-designed algorithms in most of the
cases

● But, this method is time-expensive so
○ It may not find use in live-time prediction

algorithms (e.g. Automated driving)
○ But can certainly improve data analysis

and prediction tasks (e.g. in fields of
Astronomy and particle physics)

● Also emphasises the importance of what
is called transfer learning where concepts
learned in similar, simple settings can be
used to predict outcomes in more
complex scenarios.

References
1. Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M.

W., Pfau, D., Schaul, T., Shillingford, B., and De
Freitas, N. Learning to learn by gradient descent by
gradient descent. In Advances in Neural Information
Processing Systems, pp. 3981–3989, 2016.

2. Duchi, J., Hazan, E., and Singer, Y. Adaptive
subgradient methods for online learning and
stochastic optimization. Journal of Machine
Learning Research, 12(Jul):2121– 2159, 2011.

3. Kingma, D. P. and Ba, J. Adam: A method for
stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

4. Tieleman, T. and Hinton, G. Lecture 6.5-rmsprop:
Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural networks for
machine learning, 4 (2):26–31, 2012

5. Wolpert, D. H., Macready, W. G., et al. No free lunch
theorems for optimization. IEEE transactions on
evolutionary computation, 1(1):67–82, 1997.

